Embedded STT-MRAM for Mobile Applications:

Enabling Advanced Chip Architectures

Seung H. Kang

Qualcomm Inc.
Acknowledgments

I appreciate valuable contributions and supports from Kangho Lee, Xiaochun Zhu, Xia Li, Wei-Chuan Chen, Wah Nam Hsu, J.P. Kim, Taehyun Kim, Hari Rao, Wuyang Hao, Wenqing Wu, Kendrick Yuen, Matthew Nowak, and Nick Yu of Qualcomm Inc.
Qualcomm Is World’s Leader in Mobile Communication & Computing

- No. 1 Wireless Semiconductor Company
- No. 1 Fabless Semiconductor Company
- No. 6 Semiconductor Company
- ~11,900 US Patents & ~56,100 Foreign Patents (12/2009)
Mobile Computing Is a System Business

- **Apps Processor**: 1GHz core, Dual core
- **Software**: Windows Mobile, BREW, Symbian, Android
- **Modem**: CDMA2000, EV-DO, WCDMA, HSPA, CDMA2000, GSM, GPRS, EDGE, LTE
- **Multimedia**: Audio, HD Video, 2D/3D Graphics, + More
- **RF**: WLAN 700 MHz, 800 MHz, 900 MHz, Bluetooth 1800 MHz, 1900 MHz, 2100 MHz
- **Baseband CPU**
- **Connectivity**: WLAN, Bluetooth, USB, Broadcast, SDIO
- **GPS**: Standalone Assisted
- **Memory**
- **Power Management**
Memory Positioning in System Architecture

Specification

HW/SW Partitioning

Embedded Memory (IDM & Foundry)

Process

Core

Synthesized

Hardware

Embedded Instruction Memory

Data Cache

Scratch Pad Memory

Embedded Data Memory

Off-Chip RAM

Off-Chip FLASH

HW

SW

Standalone Memory (Memory Supplier)

Specification

HW/SW Partitioning

Embedded Memory (IDM & Foundry)

Process

Core

Synthesized

Hardware

Embedded Instruction Memory

Data Cache

Scratch Pad Memory

Embedded Data Memory

Off-Chip RAM

Off-Chip FLASH

Standalone Memory (Memory Supplier)
Motivation for Embedded NVM

• Higher Performance
 o Higher bandwidth; Elimination of IO buffers

• Lower Power
 o Elimination of capacitive load from the external bus and IO buffers
 o No static power dissipation from the array

• Lower System Cost
 o Reduced packaging cost and/or elimination of external memory
 o Mitigating pad-limited designs

• Custom Memory Design to Optimize the System
 o Competitive architectural advantages (product differentiator)

• Security

Due to cost, there is a desirable window of embedded memory density. Embedded NVMs are not considered to replace standalone NVMs for high-density applications.
eFLASH for Mobile SOC Applications?

In general, eFLASH is not suitable for mobile chip applications

- Technology Node Gap
 - *eFLASH lags behind the leading logic technology by ~3 generations*

- Not a Logic-Friendly Technology
 - Process overhead: 6~8 extra masks
 - Process complexity: different types of transistors & gate oxides

- Memory Attributes Not Compelling Enough
 - High voltage operation
 - Insufficient performance (marginal advantage over the standalone option)
 - Limited reliability (endurance)

- Not a RAM: No alternative to eSRAM and eDRAM
Mobile Embedded NVM Requirements

- Performance: read & write cycle $10\text{~to~}100\text{ns}$ or better; wide IO capable
- Endurance: $>10^{12}$ cycles for RAM applications
- Low Power Logic Compatibility: 45, 32 nm, and beyond
- Cell Size & Density: less demanding requirements than standalone memory

STT-MRAM is most promising with a combination of high speed and high endurance.
Ideal Target: Nonvolatile “Working RAM/Memory”

By far, no embedded NVM exists in memory hierarchy

A nonvolatile working memory can enable a disruptive system architecture with competitive advantages versus conventional eSRAM or eDRAM solutions
45nm Low-Power Embedded STT-MRAM
Enablement Challenges

Memory cells must first meet the constraints of advanced logic technology

- Device Engineering
 - LSTP NMOS access transistor: lower I_{on}
 - V_{ddcore}: 1.1V

- Process Engineering
 - MTJ integration into porous low-k dielectric BEOL
 - Compatibility with logic BEOL thermal budget
 - MTJ size & shape distribution control

- Manufacturing Infrastructure
 - 300mm MRAM modules at a leading-edge logic fab
Technology Demonstrator
Industry’s First 45nm Embedded STT-MRAM

Lin et al. IEDM 2009 (jointly by Qualcomm & TSMC)
45 nm Switching Characteristics

Switching is thermally assisted for the pulse width $> \sim 10$ ns
Switching becomes precessional for the pulse width $< \sim 10$ ns

\[I_c = I_{c0} \left[1 - \frac{k_B T}{E_B} \ln(f_0 t_p) \right] \]
Design & Process Margin Challenges

| | NMOS | PMOS | MTJ | T (°C) | $V_{|BL-SL|}$ (V) | V_{WL} (V) |
|-------|------|------|-----|--------|------------------|--------------|
| Typical | T | T | T | 25 | 1.1 | nominal |
| Slow | S | S | $+4\sigma$ | -40 | 0.99 V_{norm}-10% |
| Fast | F | F | -4σ | 125 | 1.21 V_{norm}+10% |

Macro Design Factors
- V_{DD}: 1.1 V for 45nm LSTP
- V_{WL}
- $|V_{BL}-V_{SL}|$
- Interconnect parasitic
- Switching current asymmetry
- Voltage headroom
Read Disturb Reliability

Ensuring bit stability during read cycles at high temperatures is critical.

Equivalent to $>10^{11}$ read cycles with 10ns pulses at 125°C

Lee & Kang, Trans. Mag (2010)
MTJ Breakdown Reliability

Larger separation (Δ_2) between V_{MTJ} and VBD is key to higher endurance cycles

V_{BD_mean}: 1.164V
V_{BD_std}: 0.077V

Lin et al. IEDM (2009)
Intrinsic endurance limit should be adequate as a working memory.
Memory macros are custom designed to fit particular architectural needs. Neither a high-density embedded memory scenario nor a universal memory scenario is necessary.
Embedded STT-MRAM Opportunity: Example 1

Key Enabling Attributes: Nonvolatility, Cost, Logic Compatibility

What features can the embedded STT-MRAM provide?
- Modem system software
- Secondary boot loader
- Nonvolatile scratch pad (in lieu of the external PSRAM)

- Significant power savings attributed to the absence of EBI power for MCP
- Significant cost savings due to the elimination of MCP and simpler system architecture
Embedded STT-MRAM Opportunity: Example 2

Key Enabling Attributes: Cost, Static Power, Logic Compatibility

- ~3 times smaller area achievable by embedded STT-MRAM at 45 nm
- No static power is dissipated (zero leakage) from the memory array

Non-Volatile Memories Workshop, UCSD, April 11-13, 2010
Embedding STT-MRAM Opportunity: Example 3

Key Enabling Attributes: Nonvolatility, Performance, Logic Compatibility

- Enable true instant-on and -off (memory power can be shut down)
- Fast warm- and cold-booting: enhanced user experience
More than Memory: Nonvolatile Logic

Key Enabling Attributes: Nonvolatility, Reprogrammability, Logic Compatibility

Nonvolatile LUT formed in STT-driven MTJs
Suzuki et al. (Tohoku Univ. & Hitachi), VLSI Symp. (2009)

Improving the write performance and enabling the design environment are the keys to successful implementation

Non-Volatile Memories Workshop, UCSD, April 11-13, 2010
Embedded STT-MRAM & Reconfigurable Logic

3-D Stacked Reconfigurable Logic

Reconfigurable SOC

- Key to Success
 - High TMR for STT-Logic & low switching power for STT-MRAM
 - MTJ materials & device engineering
 - System architecture optimization: performance & power

Sekikawa et al. IEDM (2008)
Summary

• High-performance and high-endurance embedded NVMs are in demand, which can bring architectural advantages for advanced low-power SOCs
 o Must bridge the technology node gap versus the leading logic

• Yet in R&D, STT-MRAM offers most desirable embedded NVM attributes
 o Performance, endurance, and logic compatibility are the key enablers
 o Further improvement in write performance is desired
 o To maximize the benefits, HW and SW architectural changes are desired

• To be adopted for a mainstream SOC, embedded STT-MRAM must be productized *timely* at the leading-edge logic node
 o Need a pilot product driver (at the current-level of technology maturity)
 o For future, explore “More-Than-Moore” or “Beyond-Moore” opportunities